Blast Furnace Dynamics Using Multiple Autoregressive Models with Exogenous Inputs
نویسندگان
چکیده
Autoregressive models with exogenous inputs are useful tools for analyzing systems with unknown dynamics, but are limited by the assumption that the relations between inputs and output(s) are linear. For complex systems with nonlinear or abruptly changing dynamics it is possible to modify the technique by allowing for multiple local models and designing a strategy for switching between them. A method by which this can be realized is developed in the paper. The technique is applied on a complex problem in the metallurgical industry, i.e., the prediction of hot metal silicon content in the blast furnace. A set of local models is developed for different parts of a training set, using a statistical criterion for model selection. The resulting local models are then applied to predict future values of the silicon content. It is demonstrated that the method is capable to develop models, among which a proper choice can be made for prediction. The potential of multi-step predictions is also studied. Finally, some conclusions concerning the method and the results are drawn.
منابع مشابه
Using Non-linear Garch Model to Predict Silicon Content in Blast Furnace Hot Metal
Forecasting of silicon content in blast furnace (BF) hot metal has always been an important tool in the control of iron-making process. To get an accurate prediction of silicon content is an urgent task for BF operators. The approach based on generalized autoregressive conditional heteroskedastic (GARCH) has been introduced to predict step-ahead silicon content in BF hot metal. The algorithm ha...
متن کاملPrediction of Above-elbow Motions in Amputees, based on Electromyographic(EMG) Signals, Using Nonlinear Autoregressive Exogenous (NARX) Model
Introduction In order to improve the quality of life of amputees, biomechatronic researchers and biomedical engineers have been trying to use a combination of various techniques to provide suitable rehabilitation systems. Diverse biomedical signals, acquired from a specialized organ or cell system, e.g., the nervous system, are the driving force for the whole system. Electromyography(EMG), as a...
متن کاملMultivariate autoregressive models with exogenous inputs for intracerebral responses to direct electrical stimulation of the human brain
A multivariate autoregressive (MVAR) model with exogenous inputs (MVARX) is developed for describing the cortical interactions excited by direct electrical current stimulation of the cortex. Current stimulation is challenging to model because it excites neurons in multiple locations both near and distant to the stimulation site. The approach presented here models these effects using an exogenou...
متن کاملMIMO System Identification of Cement Mill Process Using NARX
This paper deals with the identification of MIMO cement mill process using Non-linear Autoregressive with Exogenous Inputs (NARX) models with wavelet network. NARX identification, based on a sequence of input/output samples, collected from a real cement mill process is used for black-box modeling of non-linear cement mill process. The NARX model is considered for two inputs and two outputs of s...
متن کاملApplication of a Kernel Method in Modeling Friction Dynamics
A kernel method has been developed to model finite degree, finite memory length and infinite degree, finite memory length Volterra series using polynomial and exponential kernels, respectively. Here, the kernel method is extended to identify NARX (Nonlinear AutoRegressive with eXogenous inputs) models. To verify its effectiveness, the proposed approach is used in modeling friction dynamics, whi...
متن کامل